

INSTRUMENT PROCESSING SHEET

S/N 80-006626

Agency Florida Highway Patrol

Date In 12/04/2023 DI Completion Date 12/19/2023 □Ship ■P/U □H/D □CMI □EE Florida Department of Law Enforcement Date 12/05/2023 By TDG Flow Calibration By TDG Date 12/05/2023 By TDG **Quality Checks** Intake Flow Column # ATP101 Annual Breath Tube Screen Registration Replace External O-Rings **5**L/min – 17mm 🖬 15L/min – 53mm Return from CMI / EE Instrument Set Up Verified R-Value 211 30L/min – 103mm Visual Inspection: Flow Verification (L/s) R-Value 206 Handle Case Post Calibration Verification (L/s) Flow Column # ATP106 Keyboard Dry Gas Shelf 32 mm <u>0.1</u>36* Flow Column # ATP106 (.139 - .169)Feet Breath Tube 36 mm 0.152* 32 mm 0.144 (.156 - .190)(.139 - .169)Ports Screws Tight 53 mm 0.234 36 mm 0.164 (.228 - .278)(.156 - .190)Other Equipment/ Accessories: 53 mm 0.230 103 mm 0.492 (.447 - .547)(.228 - .278)Power cord Printer Cable 103 mm 0.503 (.447 - .547)Barometric Pressure Check □ 12V DC Cable □ Static Bag Gauge ID # 26932 Notes: Hand-delivered Stability Checks Simulator Serial # Lot #/Exp Maintenance By Battery Replacement 0.050 202303K MP5094 Dry Gas Regulator Replacement 03/29/2025 Breath Tube Replacement 0.080 202303L MP5095 Other 03/29/2025 0.200 202304C MP5096 04/05/2025 0.080 DGS N/A 01923080A3 02/05/2025 ByTDG By TDG **Calibration Adjustment Department Inspection** Barometric Pressure ID# 26932 Barometric Pressure Gauge 1014 ID #28199 Instrument 1022 Gauge 1022 Simulator Serial # Lot # Expiration` N/A Mouth Alcohol Solution Lot # 2023-A 0.000 MP5097 N/A 0.040 10/24/2025 Acetone Stock Solution Lot # 2022-B MP5098 23400 Simulator 0.100 Serial Number MP5099 22310 08/11/2024 0.000 MP5092 0.200 09/18/2025 MP5100 23340 Interferent MP5093 0.300 MP5101 22220 06/15/2024 0.050 MP5094 0.080 DGS N/A 0.080 MP5095 08/10/2024 AG222203 0.200 MP5096 Post Calibration Adjustment Stability Checks Attachments Simulator Serial # Lot # Expiration Form 41 Post-Stability Checks 03/29/2025 0.050 MP5094 202303K 0.080 Stability Checks Flow Calibration MP5095 202303L 03/29/2025 Calibration Certificate Germ 40 0.200 MP5096 04/05/2025 202304C Calibration Adjustment Other 0.080 DGS N/A 01923080A3 02/05/2025 Instrument Complies with Chapter 11D-8, FAC Notes/Suggested Service: *Flow values outside nominal □ Instrument Does Not Comply with Chapter 11D-8, FAC range. (TDG) Return to/Place into Evidentiary Use Remain Out of Evidentiary Use Conduct an Agency Inspection Before Evidentiary Use Israel Soto Date: 2023.12.20 13:441:02 -05:00' Date: 2023.12.20 14:41:02 -05:00' Tech Review / Date Admin Review / Date

FDLE/ATP Form 48 January 2022 Issuing Authority: Alcohol Testing Program PRINTED COPIES UNCONTROLLED For Internal ATP Use ONLY FL HIGHWAY PATROL Intoxilyzer - Alcohol Analyzer Model 8000 SN 80-006626 12/05/2023 Software: 8100.27 Flow Rate Calibration*******

1: Rate (Liters/min) = 5 SQRT(Diff)) = 7.211 2: Rate (Liters/min) = 15 SQRT(Diff)) = 12.121 3: Rate (Liters/min) = 30 SQRT(Diff)) = 20.809 Dependent Data Scale Factor = 100000 L/min Independent Data Scale Factor = 256 Rounded Slope = 713 Rounded Intercept = -776077 Correlation = 0.99903

DGS 0.08g/210L	0.077 to 0.083 🗸 ≤0.003 of Wet 🗙	ر م	FL HIGHWAY PATROL Intoxilyzer - Alconol Analyzer Model 8000 12/05/2023 Software: 8100.27	Test g/210L Time Air Blank 0.000 12:05 Control Test 0.000 12:05 Air Blank 0.000 12:05 Control Test 0.000 12:07 Auerage 0.000 12:07 Rel Std Deu(2) 0.0000 12:07	Operator's Signature
0.20g/210L	0.194 to 0.206		FL HIGHLAP PATROL Intoxilyzer - Alcohol Analyzer Model 8000 12/05/2023 Software: 8100.27	Test g/210L Time Rir Blank 0.000 12:38 Rir Blank 0.196 12:39 Rir Blank 0.000 12:40 Control Test 0.196 12:41 Rir Blank 0.000 12:41 Control Test 0.196 12:41 Rir Blank 0.000 12:42 Rir Blank 0.000 12:42 Rei Std Deu (2) 0.000 12:42 Rei Std Deu (2) 0.0000 12:42	Operator's Signature
0.08g/210L	0.077 to 0.083 🗸		FL HIGHURY PATROL Intoxilyzer - Alcohol Analyzer Model 8000 12/05/2023 Software: 8100.27	Test g/210L milme Air Blank 0.000 12:32 Air Blank 0.000 12:32 Control Test 0.078 12:32 Air Blank 0.000 12:33 Control Test 0.079 12:33 Air Blank 0.000 12:33 Control Test 0.079 12:33 Air Blank 0.000 12:33 Air Blank 0.000 12:33 Auenage 0.0788 12:35 Std Deu 0.7883 12:35 Rel Std Deu(\$) 0.7370 12:35	Operator's Signature
0.05g/210L	0.047 to 0.053		FL HIGHWAY PATROL Intoxilyzer - Alcohol Analyzer Model 8000 12/05/2023 Software: 8100.27	Test g/210L Time Air Blank 0.000 12:25 Air Blank 0.000 12:25 Control Test 0.049 12:25 Air Blank 0.000 12:25 Control Test 0.049 12:26 Air Blank 0.000 12:26 Control Test 0.000 12:28 Air Blank 0.000 12:28 Air Blank 0.000 12:28 Air Blank 0.000 12:28 Auerage 0.000 12:28 Rir Blank 0.000 12:28 Rei Std Deu (%) 0.0000 12:28	Operator's Signature

Stability Checks

[]		. *	
Solution Stats Quadratic Fit Chan 2 Act Fit Residual 9/210L 9/210L 9/210L 0.000 -0.000 0.0001 0.100 0.100 0.0004 0.100 0.200 -0.0003 0.100 0.200 -0.0003 0.100 0.200 0.200 1.0001 1.200 0.200 0.200 1.0001 0.300 0.300 0.0001 1.200 0.200 1.200 1.0001 0.300 0.300 0.0001 0.300 0.300 0.0001 0.300 0.300 0.0001		кк. su ucu - u.c/u ********* Dry Gas H2O Adjust Results ********* Barometric Pressure = 1014 3 um H2O Adjust (mg/1*10,000) = 266 9 um H2O Adjust (mg/1*10,000) = 450 **** AUTO CAL PASS	
Solution Stats Quadratic Fil Act Fit Residu 9/210L 9/210L 9/210L 0.000 -0.000 0.000 0.040 0.040 -0.000 0.100 0.100 0.000 0.200 0.200 -0.000 0.200 0.200 -0.000 0.100 0.200 -2.000 5.200 0.200 0.200 -2.000 0.200 0.200 -2.000 0.200 0.200 -2.000	L 1 3533.00 3541.00 3541.00 3541.00 3541.00 11t = 3543.6667 6188 = 0.130 3365.00 3366.00 3366.00 3356.00 3556.00 20000000000000000000000000000000000	<pre>******* *****************************</pre>	-
Solution Sta Act Act 9/210L 9/210L 9/100 0.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100000000	***** UHANNEL 1 Sample #1 = 3533.00 Sample #2 = 3549.00 Sample #4 = 3549.00 Bample #4 = 3543.6667 Ruerage Result = 3543.6667 STD DEU = 4.6188 REL STD DEU = 0.130 ****** CHANNEL 2 Sample #1 = 3356.00 Sample #2 = 3356.00 Sample #3 = 3350.00 Auerage Result = 3359.6667 RUErage Result = 3359.6667 RUErage Result = 3359.6667 RUErage Result = 3359.6667	MEL 510 444 ********** Barometri 3 um H20 9 um H20 ***** AUTO 0	
**** *** 1.000 g/210L 1.000 g/210L 1.000 g/210L 1.000 g/210L 1.000 g/210L 2.200 g/210L	Std Dev = 0.13 or 0.300 g/210L Std Dev = 0.46 88 66.37 19.86 49.383320 49.383320 49.383320 ar 0.000 g/210L Std Dev = 8.43 or 0.040 g/210L Std Dev = 1.23	or 0.100 g/210L Std Dev = 0.26 or 0.200 g/210L Std Dev = 0.06 or 0.300 g/210L Std Dev = 0.05 1.69 30.05 12.55 14.743726	Chan 1 Residual 9/210L -0.0002 -0.0015 -0.0013 0.0004
***** AUTO CAL DATA ***** / <pre> ***** AUTO CAL DATA ***** al = 0.0000 mg/l or 0.000 g = 0.032 Deu = 0.013 Rel Std Deu = 0.13 Rel Std Deu = 0.13 Rel Std Deu = 1.747 Deu = 0.013 Rel Std Deu = al = 0.4762 mg/l or 0.100 g = 1.747 S = 1.747 S = 0.544 s = 3.494 </pre>	1.00 Rel Std Deu = 5.127 5.127 0.02 Rel Std Deu = 0.02 Rel Std Deu = Coef = -79.88 r Coef = 2696.37 r Coef = 2600.0000 r Coef = 26000 r Coef = 26000 r Coef = 260000 r Coef = 260000 r Coef = 260000 r Coef = 2600000 r Coef = 2600000 r Coef = 2600000 r Coef = 2600000 r Coef = 26000000 r Coef = 260000000 r Coef = 2600000000000000000000000000000000000	.4762 mg/l or 0.100 g 3.455 0.01 Rel Std Dev = 0.01 Rel Std Dev = 6.617 0.00 Rel Std Dev = 0.01 Rel Std Dev = 0.01 Rel Std Dev = 0.01 Rel Std Dev = 1.01 Rel Std Dev = 1.01 Rel Std Dev = 0.01 rel Std Dev = 1.01 rel Std Dev = 0.01 rel Std Dev = 1.01 rel Std Dev = 0.01 rel Std Dev = 1.55 Coef = 12.55	
<pre>**** AUTO CAL DATA **** **** AUTO CAL DATA **** Coluate 1 >>>>> % Abs = 0.0000 mg/1 or 0.000 g/210L % Abs = 0.032 % Abs = 0.018 Ref Std Day = 33.7 % Abs = 0.1905 mg/1 or 0.040 g/210L % Abs = 0.741 \$ Abs = 0.741 \$ Abs = 1.747 \$ Abs = 1.747 \$ Abs = 0.00 Ref Std Deu = 0.1 \$ Abs = 0.00 Ref Std Deu = 0.1 \$ Abs = 3.494 \$ Abs = 3.494</pre>		Soi Ual = 0.4762 mg/l or 0.100 g/210L % Ab5 = 3.455 Std Dev = 0.01 Rel Std Dev = 0.2 Soi Ual = 0.9524 mg/l or 0.200 g/210L % Ab5 = 6.617 % Ab5 = 6.617 Std Dev = 0.00 Rel Std Dev = 0.0 % Ab5 = 9.595 Std Dev = 0.01 Rel Std Dev = 0.0 % First Order Coef = -210.69 First Order Coef = 1390.05 Second Order Coef = 12.55 Standard Deviation = 14.743726	Solution Stats 0 Act Fit 9/210L 9/210L 0.000 0.001 0.040 0.041 0.100 0.098 0.200 0.200 0.300 0.300
0, 20, 00, 00, 00, 00, 00, 00, 00, 00, 0	28×28×24	C & J & S & S & S & S & S & S & S	
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	<pre>//1 2232 scarded = 1 0 = 12665</pre>	(-1, 0020) (0, 0070) (0, 0270) (0, 0200) (0, 0180) (0, 0180) (0, 0180) (56, 383)	ptical Calibration Adjustment : TDG
<pre><<c><c><c><c><c><c><c><c><c><c><c><c><c< td=""><td></td><td>9.5870 9.5960 9.5990 9.5990 1.5947 (0.0 0051 (0.0 0051 (0.0</td><td>ical Calibrat Adjustment TDG</td></c<></c></c></c></c></c></c></c></c></c></c></c></c></pre>		9.5870 9.5960 9.5990 9.5990 1.5947 (0.0 0051 (0.0 0051 (0.0	ical Calibrat Adjustment TDG
<pre><<pre><<cc> CHANNEL 2 Sample #1 = 6.603 Sample #1 = 6.603 Sample #2 = 6.6100 Sample #3 = 6.6167 Gange #4 = 5.6167 Gange #4 = 5.6167 Gange #2 = 0.0042 Colone = 0.0042 Sol ualue = 0.300 9/3 Sol ualue = 0.300 9/3 </cc></pre></pre>		Sample #1 = 9.587 Sample #2 = 9.596 Sample #4 = 9.596 Aug % Abs = 9.5947 Aug % Abs = 9.5947 Aug % Abs = 9.5947 Aug % Abs = 9.5947 Aug beu = 0.051 Att of the sample of the	Optica Adj By:
8 또 것 듯 핏 핏 핏 핏 ³⁰	 	\$ 	
Ref.	1	200 200 300 300 300 300 300 300 300 300	
2 >>>>> (% Abs Ref) (% Abs Ref) (% 10060) (0,0020) (0,0020) (0,0090) (0,0090) (113,836) 9 (113,836) 9 (113,836) 9 (210L ***		Sample #2 = 3.4540 (0.0120) Sample #2 = 3.4540 (0.0200) Sample #4 = 3.4640 (0.0080) Aug % Abs = 3.4547 (0.0133) STD DEU = 0.0090 (0.0061) REL STD DEU = 0.261 (45.826) 	
<pre></pre>	es Taken = 4, Dis c = 12480, 9um Io <<<<< CHANNEL 1 <<<<< CHANNEL 1 <<<<< CHANNEL 1 1e % Abs e #1 = 1.8140 e #2 = 1.7490 e #2 = 1.7467 c #3 = 1.7467 c #45 = 1.7467 c H0 = 0.144 c f = 0.0025 c H1 = 3.4660 e #1 = 3.4660	Sample #2 = 3.4540 Sample #3 = 3.4640 Sample #4 = 3.4640 Aug % Abs = 3.4647 (STD DEU = 0.009 (0 REL STD DEU = 0.261 	Sample #2 = 3.4980 Sample #2 = 3.4980 Sample #4 = 3.4890 Barple #4 = 3.4890 Fug % Abs = 3.4940 Fug % Abs = 3.4940 REL STD DEU = 0.131 REL STD DEU = 0.131
sample #1 = Sample #1 = Sample #2 = Sample #3 = Rug % Abs = Rug % Abs = ReL STD DEU = ReL STD DEU = Fit ualue =	Samples 3um io = Sample # Sample # Ren gr Rb Rug 2 Rb Rug 2 Rb Sample # Sample # Sample #	Sample # Sample # Sample # Rug % Rb RTD geU REL STD 1 Samples Samples Camolo #	Sample #2 Sample #3 Sample #4 Rug % Abs STD 0EU = REL STD 0E
er SN 80-006626 13:03:06			
lyzer SN 8	<pre>y/210L *** mg/1 %2%% Discarded = 1 Discarded = 1 1 0 = 12676 1 >>>>> (% Abs Ref) (% Abs Ref) (% 0.0330) (0.0330) (0.0330) (0.0370) (0.0370) (0.0160) 8 (28.603) </pre>	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	
PATROL - Alconol ition ition is Ualue = 1 es Ualue =	D. 000 g/210 D. 0000 mg/1 D. 0000 mg/1 D. 5cc B8, 9um 10 : 2 Abs 2 Abs 0.0640 0.0230 0.0230 0.0230 0.0230 0.0230 0.0230 0.0270 0.0230 0.0270 0.0230 0.0270 0.0270 0.0270 0.0230 0.0270 0.0230 0.0270 0.0270 0.0270 0.0270 0.0270 0.0270 0.0270 0.0270 0.0270 0.0270 0.0270 0.0270 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.00000 0.00000 0.000000	<pre>**** CHANNEL 2 >> 10 * Abs e #1 = 0.1510 e #2 = 0.1340 e #2 = 0.1340 e #3 = 0.1340 e #3 = 0.1574 E = 0.1640 e #4 = 0.1574 alue = 0.1905 mg/1 es Taken = 4, Discar n = 12485 9 mm fn = 1 n = 12485</pre>	CHANNEL 1 >>>>> CHANNEL 1 >>>>> C.R. RL 2, Rb C C, RL 0.7720 C-0.1 0.7720 C-0.1 0.7720 C-0.1 0.7740 C0.00030 0.7410 C0.00030 0.7410 C0.00030 1.0282 C0.01965 = 3.800 C5866.00
FL HIGHWAY PATROL Intoxilyzer - Alcohol Analyzer Model 8000 12/18/2023 Auto Calibration Max Power Res Value = 108 Auto Range Res Value = 77	Sol Value = 0.000 g/210L *** Fit ualue = 0.000 mg/1 222% Samples Taken = 4, Discarded = 1 Jun io = 12498, 9um io = 12676 ***** CHANNEL 1 >>>>> Sample #1 = 0.0640 (-0.0080) Sample #1 = 0.0640 (-0.0080) Sample #2 = 0.0230 (0.0330) Sample #2 = 0.0230 (0.0330) Sample #4 = 0.0270 (0.0200) Sample #2 = 0.0270 (0.0300) Sample #2 = 0.0270 (0.0300) Sample #2 = 0.0270 (0.0300) Sample #2 = 0.0270 (0.0300) Sample #4 = 0.0270 (0.0300) Sample #2 = 0.0270 (0.0000) Sample #2 = 0.0270 (0.000	<pre><<pre><<pre><<pre><<pre><<pre><<pre><<pre><<pre><<pre></pre></pre></pre></pre><pre></pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre></pre></pre></pre></pre></pre>	Sample #1 = 0.7360 Sample #1 = 0.7360 Sample #2 = 0.770 Sample #3 = 0.77170 Sample #4 = 0.77240 Hug % Abs = 0.77410 Fig % Abs = 0.7410 REL STD DEU = 3.800

Post-Cal Stability Checks

14:03 14:03 14:04 14:04 14:04 14:04 14:05 14:05 ≤0.003 of Wet Time intoxilyżer – Alcohol Analyzer Model 8000 SN 80-006626 Z DGS 0.08g/210L Operator's Signature g/210L 0.000 0.080 0.079 0.080 0.080 0.080 0.080 0.0797 0.0006 0.7247 0.077 to 0.083 Control Test Stats FL HIGHWAY PATROL Software: 8100.27 Auerage Std Deu Rel Std Deu(%) Air Blank Control Test Air Blank Air Blank Control Test Air Blank Control Test 12/18/2023 Test 14:27 14:28 14:28 14:29 14:20 14:30 14:31 Time SN 80-006626 0.20g/210L 0.194 to 0.206 Intoxilyzer - Alcohol Analyzer Model 8000 SN Operator's Signature Z g/210L 0.000 0.197 0.000 0.197 0.197 0.197 0.198 0.000 0.1973 0.0006 Control Test Stats FL HIGHWAY PATROL Software: 8100.27 Auerage Std Deu Rel Std Deu(%) Air Blank Control Test Air Blank Control Test Air Blank Control Test Air Blank 12/18/2023 -----Test 14:21 14:21 14:22 14:22 14:23 14:24 14:24 TIME SN 80-006626 0.08g/210L 0.077 to 0.083 Operator's Signature ntoxilyzer - Alcohol Analyzer 0.0790 0.0000 0.0000 g/210L 0.000 0.079 0.000 0.079 0.000 Control Test Stats Software: 8100.27 Auerage Std Deu Rel Std Deu(%) FL HIGHWAY PATROL Control Test Air Blank Control Test Control Test Air Blank 12/18/2023 Model 8000 Air Blank Air Blank Test > 14:09 14:09 14:10 14:10 14:11 14:12 14:12 14:12 Time Intoxilyzer - Alcohol Analyzer Model 8000 SN 80-006626 0.05g/210L 0.047 to 0.053 Operator's Signature g/210L 0.000 0.050 0.050 0.000 0.050 0.050 0.000 0.0497 0.0006 Control Test 0.0 Air Blank 0.0 Control Test Stats 12/18/2023 Software: 8100.27 FL HIGHWAY PATROL Auerage Std Deu Rel Std Deu(%) Air Blank Control Test Air Blank Control Test -----Air Blank Test .

Florida Department of Law Enforcement Alcohol Testing Program

DEPARTMENT INSPECTION REPORT - INTOXILYZER 8000

Agency: FL HIGHWAY PATROL Time of Inspection: 11:24

Date of Inspection: 12/19/2023

Serial Number: 80-006626 Software: 8100.27

Check or Test	YES	NO	Check or Test	YES	NO
Diagnostic Check (Pre-Inspection): OK	Yes		Date and/or Time Adjusted	-	No
Minimum Sample Volume Check: OK	Yes		Barometric Pressure Sensor Check: OK	Yes	
Alcohol Free Subject Test: 0.000	Yes		Mouth Alcohol Test: Slope Not Met	Yes	
Interferent Detect Test: Interferent Detect	Yes		Diagnostic Check (Post-Inspection): OK	Yes	

Alcohol Free Test (g/210L)	0.05g/210L Test (g/210L) Lot#:202303K Exp: 03/29/2025	0.08g/210L Test (g/210L) Lot#:202303L Exp: 03/29/2025	0.20g/210L Test (g/210L) Lot#:202304C Exp: 04/05/2025	0.08 g/210L Dry Gas Std Test* (g/210L) Lot#:01923080A3 Exp: 02/05/2025
0.000	0.050	0.079	0.198	0.081
0.000	0.050	0.079	0.198	0.081
0.000	0.050	0.079	0.199	0.080
0.000	0.050	0.079	0.198	0.081
0.000	0.050	0.079	0.198	0.081
0.000	0.050	0.079	0.198	0.081
0.000	0.050	0.079	0.199	0.081
0.000	0.051	0.079	0.198	0.080
0.000	0.050	0.079	0.199	0.081
0.000	0.050	0.079	0.199	0.080
			>	
Standard Deviations	0.0003	0.0000	0.0005	0.0004

Average Standard Deviation of 0.05, 0.08 and 0.20 g/210L Tests: 0.0003 Number of Simulators Used: 5

Remarks:

The above instrument complies (X) does not comply (

) with Chapter 11D-8, FAC.

TAYLOR D GUTSCHOW

I certify that I performed this inspection in accordance with the provisions of Chapter 11D-8, FAC.

-	1	//	11	//
,	a	16	XA	and
1	~	00		

Signature and Printed Name

12/19/2023 Date

	ia	•						ð	.9	S	~		
 Enforcement ogram Suite 1 907 	nce with		0.004	0.004	0.007	0.005	ncentration.	in accordanc	n Metrology i	indard control	Page 1 of		
Ertificate Florida Department of Law Enforcement Alcohol Testing Program 4700 Terminal Drive, Suite 1 Ft. Myers, FL 33907 manufactured by CMI Inc. was calibrated in accordance with	calibrated in accorda	UNCERTAINTY* ±				210 L Dry Gas Control	calibration results must be within \pm 0.005 or 5%, whichever is greater, of the target alcohol concentration. ssed to a 99.73% level of confidence (k=3). It are found in the associated pre and post stability checks.	ed by Alcohol Countermeasure Systems, Inc. (ACS). ACS prepared and certified these CRMs in accordance	Simulator temperatures are traceable to NIST. Simulator temperatures are checked with NIST traceable digital thermometers calibrated by Precision Metrology in accordance with ISO/ IEC 17025 standards.	through the use of CRMs supplied by an accredited CRM supplier. The supplier of dry gas standard controls ISO Guide 34 and ISO/ IEC 17025 standards. f f 12/19/2023 Date TAYLOR D GUTSCHOW,	Department Inspector		
r u L	oy UMI, INC. Was	UNC	0.050 g/ 210 L	0.080 g/ 210 L	0.200 g/ 210 L	0.080 g/ 210 L I	hichever is greater, shecks.). ACS prepared ar	ligital thermometer	CRM supplier. Th	Departme	Ŀ.	
	, manulactured I		0.0	0.0	0.20	0.0	\pm 0.005 or 5%, wl ncg (k=3). and post stability c	ystems, Inc. (ACS	h NIST traceable d	d by an accredited 5 standards.	espect • Quality		
ation C	oxilyzer 8000.	L W LA R	CONT OF				ults must be within % level of confider the associated pre-	Countermeasure	ss are checked with	through the use of CRMs supplied by an accr ISO Guide 34 and ISO/ IEC 17025 standards. f 12/19/2023 Date	Service • Integrity • Respect • Quality		(m)
Calibration	Procedures - Int		FL HIGHWAY PATROI			2	All calibration resu pressed to a 99.73 nent are found in 1		ulator temperature		Ser		
D I T E D Contation Board D I T E D LIBRATION CON OF Introviluzer	run or intoxityzer	<u>80-006626</u>	FL HIGHW	12/19/2023	11:24		0 L. ceptance criteria. A vide data and is exp nd after any adjustr	TON using solutions pre 17025 Standards.	eable to NIST. Sim 25 standards.	are traceable to NIS ls in accordance wi oduced except in fi Florida Departmen ing Program.	- 2021 ting Program		
AMSI National Acc A C C R E FORENSICA FORENSICA	FDLE/ATP Form 36 - Department Inspection Procedures - Intextlyzer 8000	umber:	Agency:	on Date:	Calibration Time:		All results are reported in g/ 210 L. Bias is limited by calibration acceptance criteria. All calibration results must be within \pm 0.005 or 5%, whichev *Uncertainty is based on fleet-wide data and is expressed to a 99.73% level of confidence (k=3). The instrument results before and after any adjustment are found in the associated pre and post stability checks.	TRACEABIL/TY INFORMATION This instrument was calibrated using solutions prepar with ISO 17034 and ISO/ IEC 17025 Standards.	Simulator temperatures are traceable to NIS accordance with ISO/ IEC 17025 standards.	Dry gas control measurements are traceable to NIST prepared and certified the CRMs in accordance with I This document shall not be reproduced except in full, without written approval of the Florida Department o Law Enforcement Alcohol Testing Program.	FDLE/ATP Form 69 December 2021 Issuing Authority: Alcohol Testing Program	20 20 20	
This is to certify	FDLE/ATP	Serial Number:	Owning Agency:	Calibration Date:	Calibrati	с 2	All results a Bias is limite *Uncertainty The instrume	TRACEABI This instrum with ISO 17(Simulator ten accordance v	Dry gas cont prepared and This docume without writt Law Enforce	FDLE/ATP Issuing Auth		

· .

×

. . .