

INSTRUMENT PROCESSING SHEET

Agency Fort Myers PD S/N 80-005468 Date In <u>09/19/2023</u> DI Completion Date <u>09/21/2023</u> □Ship ■P/U □H/D □CMI □EE Florida Department of Law Enforcement Intake By TDG Quality Checks By TDG Date 09/19/2023 Flow Calibration By____ Date Annual Breath Tube Screen Flow Column # □ Registration Replace External O-Rings ☐ 5L/min – 17mm ☐ Return from CMI / EE ■ Instrument Set Up Verified ☐ 15L/min – 53mm R-Value 201 □ 30L/min – 103mm Visual Inspection: Flow Verification (L/s) □ R-Value Case Handle Flow Column # ATP104 ☐ Post Calibration Verification (L/s) Keyboard Dry Gas Shelf 32 mm 0.140 Flow Column #____ (.139 - .169)■ Feet Breath Tube 36 mm 0.164 (.156 - .190) 32 mm _____ (.139 - .169) Ports Screws Tight 53 mm 0.234 __ (.228 - .278) 36 mm _____ (.156 - .190) Other Equipment/ Accessories: 103 mm 0.503 (.447 - .547) 53 mm _____ (.228 - .278) ☐ Power cord ☐ Printer Cable Barometric Pressure Check 103 mm ____ (.447 - .547) ☐ Static Bag ☐ 12V DC Cable Gauge ID # 26932 Stability Checks Notes: Simulator Serial # Lot #/Exp Maintenance By ☐ Battery Replacement 0.050 202201C MP5094 ☐ Dry Gas Regulator Replacement 01/11/2024 ☐ Breath Tube Replacement 0.080 202201D MP5095 ☐ Other 01/18/2024 0.200 202201E MP5096 01/18/2024 0.080 DGS N/A AG223802 08/26/2024 ByTDG **Calibration Adjustment** Department Inspection By TDG Barometric Pressure Gauge 1016 ID #28.199 Barometric Pressure ID# 26932 Simulator | Serial # Lot# Gauge <u>1016</u> Expiration Instrument 1016 0.000 MP5097 N/A N/A Mouth Alcohol Solution Lot # 2021-D 0.040 MP5098 09/30/2023 Acetone Stock Solution Lot # 2022-B 21410 0.100 Simulator MP5099 Serial Number 22310 08/11/2024 0.000 0.200 MP4863 MP5100 22050 02/07/2024 Interferent MP5093 0.300 MP5101 22220 06/15/2024 0.050 MP5094 0.080 DGS N/A 0.080 AG222203 08/10/2024 MP5095 0.200 MP5096 Post Calibration Adjustment Stability Checks Attachments Simulator | Serial # Lot# Expiration 0.050 Form 41 Post-Stability Checks MP5094 202201C 01/11/2024 0.080 Stability Checks MP5095 202201D 01/18/2024 ☐ Flow Calibration 0.200 Calibration Certificate ☐ Form 40 MP5096 202201E 01/18/2024 Calibration Adjustment Other_ 0.080 DGS N/A AG223802 08/26/2024 Notes/Suggested Service: __ Instrument Complies with Chapter 11D-8, FAC ☐ Instrument Does Not Comply with Chapter 11D-8, FAC Return to/Place into Evidentiary Use ☐ Remain Out of Evidentiary Use Conduct an Agency Inspection Before Evidentiary Use Israel Soto Digitally signed by Israel Soto Date: 2023.09.22 07.09:01 - 04'00' Phil Nicodemo Digitally signed by Phil Nicodemo Date: 2023,09.22 09:52:26 -04'00' Tech Review / Date Admin Review / Date

Stability Checks

DGS 0.08g/210L	.]	FORT MYERS PD Intoxilyzer - Alcohol Analyzer Model 8000 SN 90-005468 Software: 8100.27	Hir Blank 0.000 15:01 Rir Blank 0.000 15:01 Rir Blank 0.000 15:02 Control Test 0.079 15:03 Rir Blank 0.000 15:03 Rir Blank 0.000 15:03 Rir Blank 0.000 15:03 Rir Blank 0.000 15:04 Control Test Stats 0.079 Std Deu 0.0006 Rel Std Deu (2) 0.7277
0.20g/210L 0.194 to 0.206		FORT MYERS PD Intoxilyzer - Alcohol Analyzer Model 8000 09/19/2023 Software: 8100.27	Test 9/210L Tine Rir Blank 0.000 14:55 Rir Blank 0.000 14:58 Rir Blank 0.000 14:59 Control Test 0.198 Rir Blank 0.000 15:00 Control Test Stats Rel Std Deu(%) 0.291! Coperator's Signature
0.08g/210L		FORT MYERS PD Intoxilyzer - Alcohol Analyzer Model 8000 09/19/2023 Software: 8100.27	Test 9/210L 14:50 16:50 16:50
0.05g/210L		FORT MYERS PD Intoxilyzer - Alcohol Analyzer Model 8000 09/19/2023 Software: 8100.27	Test 9/210L Tine Rir Blank 0.000 14:44 Gontrol Test 0.049 14:46 Rir Blank 0.000 14:46 Rir Blank 0.000 14:46 Control Test 0.049 14:47 Rir Blank 0.000 14:47 Control Test Stats Ruerage 0.0490 Std Deu 0.0000 Rel Std Deu(%) 0.0000 Rel Std Deu(%) 0.0000

Sample Sa	Sol Uai Samples Samples Sample	Sample a Sam	SN: Agency Date: Quadra By:
	. 4		
<pre></pre>	Sol Ualue = 0.100 g/210L *** Fit ualue = 0.4762 mg/l %%% Samples Taken = 4, Discarded = 1 3um To = 12523, 9um To = 13717	<pre></pre>	Sol Ualue = 0.200 g/2!QL *** Fit ualue = 0.9524 mg/1 \$2324 Samples Taken = 4, Discarded = 1 3um io = 12514, 9um io = 13711
FORT MYERS PD Intoxilyzer - Alcohol Analyzer Model 8000 SN 80-005468 09/21/2023 ID:14:43 Auto Calibration Max Power Res Ualue = 10	Sol Ualue = 0.000 g/210L *** Fit value = 0.000 mg/1 %%% Samples Taken = 4, Discarded = 1 3um 10 = 12544, 9um 10 = 13729	<pre></pre>	Soi Ualue = 0.040 g/210L *** Fit value = 0.1905 mg/1 %%% Samples Taken = 4, Discarded = 1 3um 10 = 12532, 9um 10 = 13722

\$61 Ual : \$7 Hbs = \$1 First Ori Second Or (% Abs Ref) (0.0160) (0.0260) (0.0430) (0.0420) Ualue = 0.300 g/210L ***
ualue = 1.4286 mg/l \$\$\$\$
iles Taken = 4, Discanded = 1 mple % Hbs (% Hbs ple #1 = 6.9120 (0.0160) ple #2 = 6.8750 (0.0260) ple #3 = 6.8800 (0.0430) ple #4 = 6.8880 (0.0430) % Hbs = 6.8810 (0.0370) DEU = 0.0066 (0.0095) STD DEU = 0.095 (25.782) <<<< CHANNEL 2 >>>>

(% Abs Ref) 1e #1 = 4.9800 (-0.0140)
1e #2 = 5.0240 (-0.0130)
1e #3 = 4.9800 (0.0220)
1e #4 = 4.9930 (0.0140)
% PDS = 4.9950 (0.0110) .U = 0.0281 (0.0128) O DEV = 0.562 (116.065) = 12505, 9um 10 = 13705 <<< CHANNEL 1 >>>>

(% Abs Ref) (0.0000) (0.0230) (0.0290) (0.0380) <<< CHANNEL 2 >>>> DEU = 0.167 (25.166) = 0.0166 (0.0075)

Act 9/210L 0.000 6 atic Fit: +/- 0.002g/210L **Optical Calibration** 202/2/20 v: tock Myers 80-005/168 TDG

Solution Stats

***** PUTO CAL DATA **** Solution Stats Duadratic Fit Chan 2 Solution Stats Duadratic Fit Chan 2 Act Fit Residual \$ PLOUSE 1 .>>>> Solution Stats Duadratic Fit Chan 2 ### Residual \$ PLOUSE 5.000
*** AUTO CAL DATA **** << CHANNEL 1 >>>> = 0.0000 mg/1 or 0.000 g/210L 0.085 = 0.01 Rel Stg Deu = 10.19 0.761 = 0.1915 mg/1 or 0.040 g/210L 0.761 = 0.02 Rel Std Deu = 2.26 = 0.4762 mg/1 or 0.100 g/210L 1.765 = 0.01 Rel Std Deu = 0.81 0.768 mg/1 or 0.200 g/210L 3.382 = 0.01 Rel Std Deu = 0.21 1.4286 mg/1 or 0.300 g/210L 4.995 = 0.01 Rel Std Deu = 0.56 1.4286 mg/1 or 0.300 g/210L 4.995 = 0.01 Rel Std Deu = 0.56 1.606 = 2819.36 0 der Coef = 18.45 0 Deviation = 18.571564

Dry Gas H2O Adjust Results ******** Auerage Result = 3300,0000 STD DEU = 17.0880 REL STD DEU = 0.518 Sample #3 = 3318.00 Sample #4 = 3298.00 ***** CHANNEL 2 Sample #1 = 3338.00 Sample #2 = 3284.00 ******* Sol Ual = 0.0000 mg/l or 0.000 g/210L % Hbs = 0.178 Std Deu = 0.00 Rel Std Deu = 1.30 Sol Ual = 0.1915 mg/l or 0.040 g/210L % Hbs = 1.585 Std Deu = 0.02 Rel Std Deu = 1.46 Sol Ual = 0.4762 mg/l or 0.100 g/210L % Hbs = 3.622 Std Deu = 0.01 Rel Std Deu = 0.25 Std Deu = 0.01 Rel Std Deu = 0.25 Std Deu = 0.01 Rel Std Deu = 0.25 Std Deu = 0.01 Rel Std Deu = 0.25 Std Deu = 0.01 Rel Std Deu = 0.25 Std Deu = 0.01 Rel Std Deu = 0.25 Std Deu = 0.01 Rel Std Deu = 0.25 Std Deu = 0.01 Rel Std Deu = 0.10 % Hbs = 9.951 <<<< CHANNEL 2 >>>> Std Dev = 0.02 Zero Order Coef = First Order Coef = Second Order Coef = Standard Deviati

Barometric Pressure = 1016 3 um H20 Adjust (mg/1*10,000) = 375 9 um H20 Adjust (mg/1*10,000) = 575	**** RUTO CAL PASS													a a	
0.25 210.	0.10 /210L	0.17					1								
01 Rel Std Dev = 0.25 4 mg/l or 0.200 g/210L 81	01 Rel Std Dev = 0.1 6 mg/l or 0.300 g/210L 51	12 Rel Std Dev = = -235 dl	= 1330.61	12.90	5.816043			. Quadratic—Fit Chan	Residua!	g/210L	0.0002	-0.0000	-0.0005	0.0005	-0.0002
01 Rel 4 mg/1 81	91 Re1 6 Mg/1	7. 12 Rel Sto = -235 di	3	11	i 16	-		Quadi	ب	급	8	0		o)	0

Post-Cal Stability Checks

DGS 0.08g/210L 0.077 to 0.083 V ≤0.003 of Wet	FORT MYERS PD Intoxilyzer - Alcohol Analyzer Model 8000 19/21/2023 Software: 8100.27	Air Blank 0.000 11:18 Control Test 0.000 11:19 Rir Blank 0.000 11:19 Rir Blank 0.000 11:20 Rel Std Deu(%) 0.0000 Rel Std Deu(%) 0.0000
0.20g/210L 0.194 to 0.206	FORT MYERS PD Intoxilyzer - Alcohol Analyzer Model 8000 09/21/2023 Software: 8100.27	Test 9/210L Time Rir Blank 0.000 11:38 Control Test 0.199 11:38 Control Test 0.000 11:40 Rir Blank 0.000 11:41 Control Test Stats Ruerage 0.1993 Std Deu 0.0006 Rei Std Deu(\$1 0.2896
0.08g/210L	FORT MYERS PO Intoxilyzer - Alcohol Analyzer Model 8000 09/21/2023 Software: 8100.27	Test
0.05g/210L 0.047 to 0.053	FORT MYERS PD Intoxilyzer - Alcohol Analyzer Model 8000 09/21/2023 Software: 8100.27	### Pist ### Blank

Florida Department of Law Enforcement Alcohol Testing Program

DEPARTMENT INSPECTION REPORT - INTOXILYZER 8000

Agency: FORT MYERS PD

Time of Inspection: 14:41

Date of Inspection: 09/21/2023

Serial Number: 80-005468

Software: 8100.27

Check or Test	YES	NO	Check or Test	YES	NO
Diagnostic Check (Pre-Inspection): OK	Yes		Date and/or Time Adjusted	-	No
Minimum Sample Volume Check: OK	Yes		Barometric Pressure Sensor Check: OK	Yes	
Alcohol Free Subject Test: 0.000	Yes		Mouth Alcohol Test: Slope Not Met	Yes	
Interferent Detect Test: Interferent Detect	Yes		Diagnostic Check (Post-Inspection): OK	Yes	

Alcohol Free Test (g/210L)	0.05g/210L Test (g/210L) Lot#:202201C Exp: 01/11/2024	0.08g/210L Test (g/210L) Lot#:202201D Exp: 01/18/2024	0.20g/210L Test (g/210L) Lot#:202201E Exp: 01/18/2024	0.08 g/210L Dry Gas Std Test (g/210L) Lot#:AG223802 Exp: 08/26/2024
0.000	0.048	0.078	0.200	0.078
0.000	0.048	0.077	0.199	0.078
0.000	0.048	0.077	0.199	0.078
0.000	0.048	0.077	0.199	0.078
0.000	0.048	0.077	0.200	0.078
0.000	0.048	0.078	0.200	0.078
0.000	0.049	0.078	0.199	0.078
0.000	0.048	0.077	0.199	0.078
0.000	0.048	0.078	0.199	0.077
0.000	0.049	0.077	0.199	0.078
			5	i i
Standard Deviations	0.0004	0.0005	0.0004	0.0003

Average Standard Deviation of 0.05, 0.08 and 0.20 g/210L Tests: 0.0004 Number of Simulators Used: 5

The above instrument complies (X) does not comply () with Chapter 11D-8, FAC.

I certify that I performed this inspection in accordance with the provisions of Chapter 11D-8, FAC.

TAYLOR D GUTSO

Signature and Printed Name

09/21/2023 Date

Calibration Certificate

Florida Department of Law Enforcement Alcohol Testing Program 4700 Terminal Drive, Suite 1 Ft. Myers, FL 33907

This is to certify the calibration of Intoxilyzer 8000 serial number 80-005468, manufactured by CMI, Inc. was calibrated in accordance with FDLE/ATP Form 36 - Department Inspection Procedures - Intoxilyzer 8000.

Serial Number:	80-005468	UNCERTAINTY* ±	
Owning Agency:	FORT MYERS PD	0.050 g/210 L	0.00
Calibration Date:	<u>09/21/2023</u>	0.080 g/210 L	0.00
Calibration Time:	<u>14:41</u>	0.200 g/210 L	0.00
		0.080 g/210 L Dry Gas Control	0.00

04 07

All results are reported in g/210 L.

Bias is limited by calibration acceptance criteria. All calibration results must be within ± 0.005 or 5%, whichever is greater, of the target alcohol concentration. *Uncertainty is based on fleet-wide data and is expressed to a 99.73% level of confidence (k=3),

The instrument results before and after any adjustment are found in the associated pre and post stability checks

TRACEABILITY INFORMATION

This instrument was calibrated using solutions prepared by Alcohol Countermeasure Systems, Inc. (ACS). ACS prepared and certified these CRMs in accordance with ISO 17034 and ISO/ IEC 17025 Standards. Simulator temperatures are traceable to NIST. Simulator temperatures are checked with NIST traceable digital thermometers calibrated by Precision Metrology in accordance with ISO/ IEC 17025 standards.

Dry gas control measurements are traceable to NIST through the use of CRMs supplied by an accredited CRM supplier. The supplier of dry gas standard controls prepared and certified the CRMs in accordance with ISO Guide 34 and ISO/ IEC 17025 standards. This document shall not be reproduced except in full,

without written approval of the Florida Department of Law Enforcement Alcohol Testing Program.

Date

09/21/2023

TAYLOR D GUTSCHOW Department Inspector

Service • Integrity • Respect • Quality

Issuing Authority: Alcohol Testing Program

FDLE/ATP Form 69 December 2021

Page 1 or