

INSTRUMENT PROCESSING SHEET

Agency Martin CSO

S/N 80-001189

Date In 01/19/2023 DI Completion Date 02/01/2023 ■Ship □P/U □H/D □CMI □EE Florida Department of Law Enforcement Intake ByTDG Quality Checks By TDG Date 01/26/2023 Flow Calibration By ____ Date__ Flow Column # Annual Breath Tube Screen Replace External O-Rings □ 5L/min – 17mm Registration Return from CMI / EE Instrument Set Up Verified 15L/min – 53mm R-Value 155 30L/min – 103mm Visual Inspection: R-Value Flow Verification (L/s) Handle Case Flow Column # ATP104 Post Calibration Verification (L/s) Dry Gas Shelf Keyboard Flow Column #_____ 32 mm 0.160 (.139 - .169) Feet Breath Tube 36 mm 0.171 32 mm _____ (.139 - .169) (.156 - .190) Screws Tight Ports 53 mm 0.242 36 mm _____ (.156 - .190) (.228 - .278) Other Equipment/ Accessories: 103 mm 0.515 53 mm _____ (.228 - .278) (.447 - .547)Power cord Printer Cable Barometric Pressure Check 103 mm (.447 - .547) Static Bag 12V DC Cable Gauge ID # 68639 Stability Checks Notes: Simulator Serial # Lot #/Exp Maintenance Bv Battery Replacement 0.050 202201C MP5092 Dry Gas Regulator Replacement 01/11/2024 Breath Tube Replacement 202201D 0.080 MP5093 Other _____ 01/18/2024 0.200 202201E MP5094 01/18/2024 0.080 DGS N/A 00521080A2 02/05/2023 ByTDG **Calibration Adjustment** Department Inspection By TDG Barometric Pressure ID# 28663 ID # 28199 Barometric Pressure Gauge 1024 Gauge 1024 Instrument 1024 Expiration Simulator Serial # Lot # Mouth Alcohol Solution Lot # 2021-D N/A 0.000 N/A MP5099 Acetone Stock Solution Lot # 2021-C 0.040 09/30/2023 MP5096 21410 0.100 Simulator Serial Number MP5098 22310 08/11/2024 0.000 MP5095 0.200 MP5100 22050 02/07/2024 Interferent MP5097 0.300 MP5101 22220 06/15/2024 0.050 MP5092 0.080 DGS N/A 0.080 06/08/2023 MP5093 AG115904 0.200 MP5094 Post Calibration Adjustment Stability Checks Simulator | Serial # Lot # Expiration Attachments Form 41 Post-Stability Checks 0.050 MP5092 202201C 01/11/2024 0.080 Stability Checks Flow Calibration MP5093 202201D 01/18/2024 G Form 40 Calibration Certificate 0.200 01/18/2024 MP5094 202201E Other_ Calibration Adjustment 0.080 DGS N/A 00521080A2 02/05/2023 Instrument Complies with Chapter 11D-8, FAC Notes/Suggested Service: A discretionary optical cal adjust □ Instrument Does Not Comply with Chapter 11D-8, FAC was performed. See notes on Stabilities. (TDG) TDG 02/07/2023 Return to/Place into Evidentiary Use Remain Out of Evidentiary Use Technical Review: Corrected pre-cal stabilities and IPS to reflect Conduct an Agency Inspection Before Evidentiary Use the 0.08 ARS and DGS had >0.003 agreement and to remove the discretionary descriptors. (TDG 02/07/2023) Israel Soto Date: 2023/22/07 12/100 Date: 2023/22/07 12/100 Date: 2023/22/07 13/03/20-05/00' Tech Review / Date Admin Review / Date

FDLE/ATP Form 48 January 2022 Issuing Authority: Alcohol Testing Program PRINTED COPIES UNCONTROLLED For Internal ATP Use ONLY

Type of Test	Serial Number	Agency	Date	Performed By
Stabilities	80-00 11 89	Martin (SO	01 26 2023	TDG MG

TDG 02/07/2023

0.05g/210L	0.08g/210L		0.20g/210L	DGS 0.08g/210L			
0.047 to 0.053	0.077 to 0.083		0.194 to 0.206		0.077 to 0.083 🗸	≤0.003 of Wet	
ATA 11.00 E. 10.000 E. 10.000 E. 20.000 E	Vistin film af Intoxilyzer - Alconol Analyzer Model 8000 EN 85-000189 01/26/2023 Software: 8000 EN 85-000189 01/26/2023 Software: 8000 EN 85-000189 Air Blank 0.000 Inte Control Test 5285 Alenage 0.000 Inte Sto Dev 0.0005 Rei Sto Dev 0/&: 0.7339		Alf Blarx Core and Alf Blarx Core and		 MARTICA CLARTA SL Chartel, gen - Rubert Note: 2001, D1/25/2023; SDFtware: 8100.27 Rest 9100.27 Rest 9101.27 Rest 9101.27<!--</td--><td>12. Tre 12. 113. 12. 113. 13. 113</td>	12. Tre 12. 113. 12. 113. 13. 113	
Cherlessonia Elignessone	. Operator is Styracura		Denator is Signature		Cpenetonie Si	NG- 5781.78	
mments: Will perform the 0.08 At	TDG 02/07/2023 a discretionary optic 25 and 065 into a n	al	cal adjust to brin optimal agreement.	5	MG oilzelz		

55

NOT IN SOLATY SO
MARTIN COUNTY SC
<mark>Intóxilyzen - Alconol Analyzen Model 8000 - SN 80-001189</mark>
02/01/2023 09:29:40
Auto Calibration
Max Rower Res Uside = 24
Auto Range Res value = 9
100 x 2.12 0 1.111 y 2.12 100 214 31 y 2 0 1000
Samples Taken = 4. Distance: = 1
3um 10 = 12188, 9um 10 = 13958
Sot walke = 1.707 g 2112 *** Fit walke = 1.707 g 75 *** Samples Taken = 4, 21stantet = 1 3.m ic = 12186, 9.m ic = 13955 . <kkeek 1="" c-anmel="">>>></kkeek>
Sample # 4 Pos (% Pos Ref) Sample #1 = 0.1600 (-0.0210) Sample #2 = 0.1740 (-0.0220) Sample #3 = 0.1490 (0.0390) Sample #4 = 0.1500 (0.0540) Aug % Pos = 0.1577 (0.0303) STO DEU = 0.0142 (0.0290)
Sample #1 = 0.1600 (-0.0210)
Sample #2 = 0.1740 5-0.0020;
Sample P3 F 0.1450 (0.0540)
Ouro 9 Cost = 0 1577 (0 3303)
$ST0 \ DEU = 0.0142 \ (0.0290)$
REL STD DEU = 8.977 (95,566)
*
<<<< CHANNEL 2 >>>>>
Sample % Abs % Abs <t< td=""></t<>
28'918 FL - 111421 (TULLAU)
Sample #4 = 0.1380 (0.0380)
Aug % Abs = 0.1370 (0.0287) STD DEU = 0.0346 (0.010) REL STD DEU = 3.345 (35.116)
STŐ DEU = 0.0046 (0.000)
REL STD DEU = 3.345 (35.116)
201 (-1
Sci Ualle = 0.040 g/2001 *** Fit Ualle = 0.0905 mg/1 %%%
Samples Taker = 4, Discanded = 1
,

	and proved when	, -	
	3um 10 = 1216	2, 9.*	10 = 13939
	<<<< 5	HANNEL	: >>>>>
	Sample	3 615	(% Pos Ref)
	Sample #1 = .	1.9121	(-1.0191)
	Sample #2 =	1.8881	(2.0582)
	Sample #3 =	1368.1	(2.0410)
	Sarçle #4 = 1	1.9961	:2.24353
•	Avg % Ats = 0		
	STO DEU = 10.1	1253	1.1:971
	REL STO DEC =		

22222 C (1) C
888866 (0 <u>42856)</u> 2 55555
Sample # 4 Pos 13 Pos Re4. Sample # 4 Pos 13 Pos Re4. Sample #2 = 1.6251 1-1.00701 Sample #2 = 1.6260 11.02601 Sample #3 = 1.6260 11.02601 Sample #4 = 1.6170 (0.0400) PUS % Pos = 1.6263* 10.02671 STO DEJ = 0.0395 (0.0130) OEU STO DEJ = 0.5264 (0.0 700)
Denote Hit - 1 5760 - Ko drafen
10 pre m2 = 1.0001 - 1.01411
Dd pre HD - 1.5251 - 1.0251,
3d p.e #4 - 1.51/6 (0.0490)
-Ug 6 -UE - 1.020320/.
25 JEJ = 11195 11151
REL STO DEU = 0.584 (48.798)
551 Value = 0.100 g/2001 *** Fin Value = 0.4762 ng/1 %%%
Complex Takes - A Discussion
Samples Taken = 4, Discanded = 1
3un 10 = 12147, 9ún 10 = 13930
<pre><cccc [rdnne_1="">>>>> Compile</cccc></pre>
Sample & Abs (% Abs Ref) Sample #1 = 2.0150 (+0.0230)
58"P.E.F. F. 2.0150 (1-0.1232)
Sample #2 = 1.9930 C0.01700 Sample #3 = 2.0160 C0.02500 Sample #3 = 2.0160 C0.02500 Sample #4 = 1.9970 C0.02800 Pvg % Pos = 2.0020 11.02330
Затрие на = 2.0150 (0.0250)
Sample #4 =9975 (0.0280)
Pug X PDS = 2.0020 (1.0233)
STO DEU = 0.0123 (5.0057)
REL STO DEV = 1.614 (24.370)
KKKKK CHANNEL 2 >>>>
Sample % Abs (% Abs Ref)
Sample #1 = 3.8290 (-0.0010)
Sample H2 = 3.8110 (0.0250)
Sample #2 = 3.8110 (0.0260) Sample #3 = 3.8200 (0.0290) Sample #4 = 3.7920 (0.0480) Pug % Pbs = 3.8077 (0.0343)
Sample #4 = 3.7920 [0.3480]
HUG & HDS = 3.8077 (0.0343)
5TC DEV = 1.1143 (1.0119)
REL STO DEV = 0.375 (34,749)
10B.LE P
bamples isken = 4, utscanded =
Sc: .Bl.e = 0.200 g/002 *** Fit value = 0.9524 mg/1 *** Samples Taken = 4, Discanded = 1 Sum 10 = 02043, Sum 00 = 03926 KKKKK CHANNEL 1 >>>5>
SSSSS
Sample % ADS (% ADS Ref)
Sample #1 = 3.8233 (-1.0350) Sample #2 = 3.7773 (0.6520) Sample #3 = 3.7882 (0.6520)
Sample #2 = 3,7771 (1,0520)
Sample #3 = 3.7881 (0.0680)
Semple #4.7 3.7920 02.07400 00
Aug & Abs = 3.7850 (0.0647)
2 - 12, ² , 1.1.1 - 1.1.1.4,
REL STO DE, = 0.185 (17.596) (

*

4

KKKK (77245) 2 2222
company & new fifth des Doff
Sample #1 = 7.3030 140.0140 Sample #2 = 7.2430 10.07400 Sample #3 = 7.2531 (0.08000 Sample #3 = 7.2591 (0.08000 Sample #4 = 7.2480 (0.09200
Sample #2 = 7.2430 (2.0740)
Sample #3 = 7.2531 (1.0800)
Sancie =4 = 7.2481 (0.0920)
Aug % Abs = 7.2480 (0.0820)
STD DEU = 0.0050 (0.0092)
REL STD CEU = 3.069 (11.177)
Sol Lalle = 2.300 (7212) ###
Fit weive = 1,4295 rg/1 1001
Semples Texen = 4, Discended = 1
3um 10 = 12143, 9um 10 = 13926 <<<<< CHANNEL 1 00000
снина у фар 19 Ста 2007
Campia 80 a 5 5750 10 04870
Semple % Acs (% Acs Ref) Semple #1 = 5.5690 (A-0.0050) Semple #2 = 5.5350 (0.0480) Semple #3 = 5.5350 (0.0680) Semple #4 = 5.5460 (0.0510)
Sertie #4 = 5,5482+ (0.0510)
aug N 455 = 5.5353 (1.0557).
570 DEV = 1 C.0128 (0.0108)
REL STC-DEU = 0.226 (19.376)
×
<<<< CHRMEL 2 >>>>
Sample & HUS (4 HUS Ker)
580p.e.H1 - 10.0000 (0.0000)
Sample # Hos (% Aos Ref) Sample #1 = 10.5850 (0.0000) %Ample #2 = 10.5100 (0.0880) Sample #3 = 10.4920 (0.0880) Sample #4 = 10.5350 (0.0820) Sample #4 = 10.5350 (0.0820)
Sample #2 = 10.4320 (0.1820)
Aug % Aps = 10.5123 (0.0927)
STD DEU = 0.0216 (0.0136)
REL STD DEU = 5.205 (14.691)
Optical Calibration
SN: 80-00 1189
Agency: 1640 (SO Date: 02 01 2023
Quadratic Fit: +/- 0.002g/210L √
By: TDG MG

XXXXX AUTO CAL DATA XXXXX		
<<<< CHANNEL 1 >>>>>		
Soi Val = 0.000 mg/1 on 0.000 g/2001		
% RDS = 0.158 Sto Dew = 0.01 Rel Sto Dew = 8.98		
Sci Val = 0.1935 mg/1 on 0.042 g/2101		
201 od 0.320 'g': 0 0.07. g'i.u		
% ADS = 0.890		
Sta Dev = 0.01 Rel Sta Dev = 0.59 Sol Jel = 0.4762 mg/l on 0.100 g/2101		
30. v21 - 0.4/52 rg/. 0 0 g/2 % ADS = 2.012		
Std Dev = 0.01 Rel Std Dev = 0.61		
Columbia - Collinger Colling - Colling		
Soi Val = 0.9524 ng/l on 0.200 g/2001		
% Abs = 3.785 Std De - 0.01 Pel Std De - 0.18		
Std Dew = 1.01 Rel Std Dew = 10.18 Sol Wal = 1.4286 mg/1 on 0.300 g/2101		
% ADS = 5.535		
Stá Deu = 1.31 Rei Sta Deu = 1.23		
Zeno Griden Coef = -394.37	ì	,
First Onder Coef = 2545.17 Second Order Coef = 19.36	,	
Standard Deviation = 13.577123		
<pre><<<< CHANNEL 2 >>>>> Col Hai = 0 0000 act on 2 000 act of 0 </pre>		
Sol Val = 0.0000 rg/1 or 0.000 g/210L		
% Abs = 0.137		
Std Dev = 0.00 Rel Std Dev = 3.34		
Sol Val = 0.1935 mg/l on 0.040 g/2101		
% Abs = 1.626		
Sto Dev = 2.01 Rel Sto Dev = 2.58 Sol Val = 2.4762 rg/1 or 2.102 g/210_		
% ADS = 3.808		
Std Dev = 0.01 Rel Std Dev = 0.38		
Sol Ual = 0.9524 mg/l on 0.200 g/2101		
% Abs = 7.248		
Std Dev = 0.01 Rel Std Dev = 0.07		
Sol Wal = 1.4285 mg/l or 0.300 g/210L		
% Abs = 10.512		
Std Dev = 0.02 Rel Std Dev = 0.21		
Zend Onder Soef = -169.25		
First Order Coef = 1252.18		
Second Chden Coef = 11.69		
Standard Deviation = 4,963554		
/ Solution Stats Quadratic Fit Char 1		
Cat Die Conte al		
g/2:11 g/211 g/2:11		
g/210_ g/210_ g/210_ 0.000 0.000 -0.0002		
2.040 2.040 0.0004		
5/2 5/21 5/21 5/21 0.000 0.0002 0.0002 0.0002 0.041 0.141 0.0004 0.0004 0.100 0.000 -1.0114 0.0002 0.201 0.201 -1.0114 0.201 0.201 0.0002 0.302 0.302 -0.0000		
1.201 1.201 0.002		
Fit Hest occat 5/210_ 5/210_ 5/210_ 0.000 0.000 +0.0002 0.041 0.340 0.0004 1.101 1.001 +0.0014 1.202 0.200 0.2002 0.303 -0.0014 -0.0014 1.203 0.2001 0.2002 0.3000 0.3001 -0.0000		

·····
Solution State Quarratic Fit Chan 2
Act Fit Residual
g/2:1_ g/2:1_ g/2:1_
"
5/211_ 5/211_ 5/211_ 1.000 1.000 -1.0001 2.040 1.040 1.0001 1.100 1.040 -1.0001
101.10 0.100 -1.0001
1 2.202 2.209 2.0001
0.300 0.300 -0.0000 1
Sol value = 0.180 g-2102 +++
Fin elle = 0.3800 mg/l XXXX
Samples Taken = 4, Discarded = 1
***** CHANNEL 1
Sample #1 = 2848.03 Sample #2 = 2936.00
Sample #2 = 2936 M ¹
Sample #3 = 2921.00
Sample #4 = 2903.00
Auerage Result = 2920.000
STD DEU = 16.5227
$\frac{1}{REL} STD DEU = 0.566$

***** CHANNEL 2
Sample #1 = 3392.00
Sample #2 = 3370.00
Sample #3 = 3408.00 Sample #4 = 3402.00
Avenage Result = 3393.3373
STD DEW = 20.4287
REL STD CEU = 3.602
Chy Gas H2C Adjust Results and and
Baromethic Pressure = 1124
3 um +20 Acjust (mg/1+10,000) = 888
9 um -20 Acjust (rg/1+10,000) = 416
**** AUTO CAL PASS

		And the second second			
Type of Test	Serial Number	Agency	Date	1	Performed By
Stabilities (Post-Cal)	80-00 11 89	Martin (SO	020	2023	TDG MG

0.05g/210L	0.08g/210L	0.20g/210L	DGS 0.08g/210L			
0.047 to 0.053	0.077 to 0.083	$\overline{\mathbf{V}}$	0.194 to 0.206	0.077 to 0.083	1	≤0.003 of Wet 🗸
Terrer Control	MARTIN COLVEN SC Interviluger - Alexan, Preluger Mutat Addis IZ/01/2023 Software: Block Software: Block Pir Blank Alexan Alexan Pir Blank Alexan Software: Block Pir Blank Alexan Alexan Alexan Alexan Software: Blank Alexan Rel Sto Beu(X: Sto Deu(X: Sto Deu(X: Sto Deu(X: Alexan		Validation of the second of th	Antical Control States Model Scool 22/Di/2D23 , Software: GROLZ Test Air Blank Control Test Air Blank Control Test States Auenage Sto Deu Rel Sta Deu(%)	27 9/211 0.000 0.029 1.011 0.029 0.021 0.021 0.021 0.025 0.025 0.020	24 52-521169 L Tine 10:37 10:37 10:38 10:38 10:38 10:38 10:38 10:38 10:33
Cperatur's Signature	Question a Répetione		Sterator is Signature	a Derettr	M	Ь- ел.те

.

3.63

Florida Department of Law Enforcement Alcohol Testing Program

DEPARTMENT INSPECTION REPORT - INTOXILYZER 8000

Agency: MARTIN COUNTY SO Time of Inspection: 13:26

Date of Inspection: 02/01/2023

Serial Number: 80-001189 Software: 8100.27

Check or Test	YES	NO	Check or Test	YES	NO
Diagnostic Check (Pre-Inspection): OK	Yes		Date and/or Time Adjusted		No
Minimum Sample Volume Check: OK	Yes		Barometric Pressure Sensor Check: OK	Yes	
Alcohol Free Subject Test: 0.000	Yes		Mouth Alcohol Test: Slope Not Met	Yes	
Interferent Detect Test: Interferent Detect	Yes		Diagnostic Check (Post-Inspection): OK	Yes	

Alcohol Free Test (g/210L)	ree 0.05g/210L Test (g/210L) 0.08g/210L Test (g/210L) Lot#:202201C Lot#:202201D Exp: 01/11/2024 Exp: 01/18/2024		0.20g/210L Test (g/210L) Lot#:202201E Exp: 01/18/2024	0.08 g/210L Dry Gas Std Test (g/210L) Lot#:00521080A2 Exp: 02/05/2023		
0.000	0.050	0.078	0.199	0.080		
0.000	0.050	0.078	0.200	0.079		
0.000	0.050	0.078	0.200	0.079		
0.000	0.050	0.079	0.200	0.079		
0.000	0.050	0.078	0.200	0.079		
0.000	0.050	0.078	0.200	0.079		
0.000	0.050	0.078	0.200	0.080		
0.000	0.050	0.078	0.200	0.079		
0.000	0.050	0.079	0.200	0.079		
0.000	0.050	0.079	0.200	0.080		
			\$			
Standard Deviations	0.0000	0.0004	0.0003	0.0004		

Average Standard Deviation of 0.05, 0.08 and 0.20 g/210L Tests: 0.0002 Number of Simulators Used: 5

Remarks:

The above instrument complies (X) does not comply (

) with Chapter 11D-8, FAC.

I certify that I performed this inspectio	on in accordance with the provisions of Chapter 11D-8, FAC
(Inthe)	on in accordance with the provisions of Chapter 11D-8, FAC TAYLOR D GUTSCHOW
aut x mon	Signature and Brinted Name

Signature and Printed Name
02/01/2023
Date

Calibration Certificate

Florida Department of Law Enforcement Alcohol Testing Program 4700 Terminal Drive, Suite 1 Ft. Myers, FL 33907

This is to certify the calibration of Intoxilyzer 8000 serial number <u>80-001189</u>, manufactured by CMI, Inc. was calibrated in accordance with FDLE/ATP Form 36 - Department Inspection Procedures - Intoxilyzer 8000.

Serial Number:	80-001189	UNCERTAINTY* ±	
Owning Agency:	MARTIN COUNTY SO	0.050 g/ 210 L	0.004
Calibration Date:	02/01/2023	0.080 g/ 210 L	0.004
Calibration Time:	<u>13:26</u>	0.200 g/ 210 L	0.007
	1/1/2005	0.080 g/ 210 L Dry Gas Control	0.005

All results are reported in g/ 210 L.

Bias is limited by calibration acceptance criteria. All calibration results must be within ± 0.005 or 5%, whichever is greater, of the target alcohol concentration. *Uncertainty is based on fleet-wide data and is expressed to a 99.73% level of confidence (k=3). The instrument results before and after any adjustment are found in the associated pre and post stability checks.

TRACEABILITY INFORMATION

This instrument was calibrated using solutions prepared by Alcohol Countermeasure Systems, Inc. (ACS). ACS prepared and certified these CRMs in accordance with ISO 17034 and ISO/ IEC 17025 Standards.

Simulator temperatures are traceable to NIST. Simulator temperatures are checked with NIST traceable digital thermometers calibrated by Precision Metrology in accordance with ISO/ IEC 17025 standards.

Dry gas control measurements are traceable to NIST through the use of CRMs supplied by an accredited CRM supplier. The supplier of dry gas standard controls prepared and certified the CRMs in accordance with ISO Guide 34 and ISO/ IEC 17025 standards.

This document shall not be reproduced except in full, without written approval of the Florida Department of Law Enforcement Alcohol Testing Program.

02/01/2023

TAYLOR D GUTSCHOW, Department Inspector

FDLE/ATP Form 69 December 2021 Issuing Authority: Alcohol Testing Program

Service • Integrity • Respect • Quality

Date

Page 1 of 1